The alternative carboxyl termini of avian cardiac and brain sarcoplasmic reticulum/endoplasmic reticulum Ca(2+)-ATPases are on opposite sides of the membrane.

نویسندگان

  • A M Campbell
  • P D Kessler
  • D M Fambrough
چکیده

The sarcoplasmic/endoplasmic reticulum slow-twitch or cardiac Ca(2+)-ATPase (SERCA2) is expressed as two forms (SERCA2a and SERCA2b) which vary at their extreme carboxyl termini. SERCA2a and SERCA2b are derived from alternatively spliced primary transcripts of the same gene. These two alternative carboxyl termini are highly conserved in mammals (Eggermont, J. A., Wuytack, F., De Jaegere, S., Nelles, L., and Casteels, R. (1989) Biochem. J. 260, 757-761; Lytton, J., and MacLennan, D. H. (1988) J. Biol. Chem. 263, 15024-15031) and birds (Campbell, A. M., Kessler, P. D., Sagara, Y., Inesi, G., and Fambrough, D. M. (1991) J. Biol. Chem. 266, 16050-16055). The topology of SERCA2a is believed to be identical to the fast-twitch Ca(2+)-ATPase (SERCA1) with 10 membrane-spanning domains. Based on hydropathy analysis, the extended carboxyl terminus of SERCA2b is predicted to span the endoplasmic reticulum (ER) membrane an additional (i.e. 11th) time. We have added the human c-myc epitope, a 10-amino acid sequence recognized by monoclonal antibody 9E10, onto the carboxyl termini of SERCA2a and SERCA2b to test whether or not their carboxyl termini are on the same side of the ER membrane. The added epitopes do not appear to disrupt topology as judged from unaltered Ca2+ transport. Immunocytochemical studies demonstrate that SERCA2a and SERCA2b have their carboxyl termini on opposite sides of the ER membrane; SERCA2a's is in the cytosol and SERCA2b's is in the ER lumen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gating Behavior of Endoplasmic Reticulum Potassium Channels of Rat Hepatocytes in Diabetes

Background: Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic...

متن کامل

An evidence for a potassium channel in endoplasmic reticulum based on single channel recording in bilayer lipid membrane

Introduction Numerous studies have demonstrated the presence of potassium selective channels in membranes internal organelles. These channels are essential to a large variety of cellular processes including intracellular 2+ a signaling, protein recycling, charge neutralization and cell protection. In contrast to the sarcoplasmic reticulum + here potassium channels have been clearly ...

متن کامل

Movement of Ca(2+)-ATPase molecules within the sarcoplasmic/endoplasmic reticulum in skeletal muscle.

The endoplasmic reticulum undergoes rapid, microscopic changes in its structure, including extension and anastomosis of tubular elements. Such dynamism is expected to manifest itself also as rapid intermixing of membrane components, at least within subdomains of the endoplasmic reticulum. Here we present evidence of a similar dynamism in the sarcoplasmic reticulum of developing skeletal muscle....

متن کامل

CHANGES OF PERK AND CHOP PROTEINS IN ENDOPLASMIC RETICULUM OF CARDIAC MYOCYTES AND TNF IN DIABETIC WISTAR RATS FOLLOWING CONTINUOUS AND INTERVAL EXERCISE

Background: Physical activity plays a major role in the prevention of cardiovascular disease and diabetes, but the effect of intense activity on endoplasmic reticulum proteins and apoptosis and necroptosis in diabetic conditions is unclear. The aim of the present study was to investigate the changes of PERK and CHOP proteins in endoplasmic reticulum of cardiac myocytes of diabetic Wistar rats f...

متن کامل

Cytoplasmic acidification reduces potassium channel activities in the endoplasmic reticulum of rat hepatocytes

Introduction: Intracellular pH (pHi) regulates essentially all aspects of cellular activities. However, it is unknown how endoplasmic reticulum (ER) potassium channels sense pHi. In this study, we investigate the direct effects of pHi on ER potassium channels. Methods: We used channel incorporation into the bilayer lipid membrane method. L-α-phosphatidylcholine, a membrane lipid, was extrac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 267 13  شماره 

صفحات  -

تاریخ انتشار 1992